

□+18149968462 | **y**ztxwd@gmail.com | **1** yztxwd | **1** Jianyu

Skills

Programming Python, JAVA, R

Machine learning & Statistics Scipy, Scikit-Learning, CuML. General machine learning skills, specialized in Bayesian method

Deep learningTensorflow, DALI, Pytorch, Webdataset, Pytorch-lightning, Huggingface, Captum, TF-Modisco

CNN, Transformer style model design, training, and interpretation

Genomics ChIP-seq, ATAC-seq, RNA-seq, MNase-seq, BS/TAB-seq analysis

Pipelines & Infra Snakemake, HDF5, Singularity/Apptainer, Docker, Conda, Slurm, HPC clusters, Proxmox

Wetlab Molecular Cloning, CRISPR-Cas9, Cell Culture

Experience

Interpret Genomics Deep Learning Models via Concept Attribution

SKILLS: PYTORCH, CAPTUM/DEEPLIFTSHAP, TF-MODISCO, SCIKIT-LEARN

Oct. 2024 - Now

- · Improved global concept attribution method Testing with Concept Activation Vector (TCAV) and adapted it to Genomics models
- · Highly generalizable and flexible, proved reliability on large scale foundation models and various type of model inputs.

Nucleosome Calling with Bayesian Gaussian Mixture Models (SEM Algorithm)

Skills: Java, MNase-seq pipeline, Bayesian Methods, Cell Culture, Molecular Biology, CRISPR-Cas9

Sep. 2017 - April. 2024

- Constructed TET family mutant cell lines by CRISPR-Cas9.
- Designed and implemented the Size-based Expectation Maximum (SEM) algorithm (github.com/YenLab/SEM) in Java to classify nucleosome subtypes using expectation-maximization and Gaussian mixtures. Explored the properties of fragile nucleosome in mES.

Training and interpreting deep learning model for FOXA1 binding partner in A549

Skills: Pytorch. Pytorch-Lightning. Captum/DeepLiftSHAP. TF-Modisco

Jan. 2022 - Oct. 2023

• Designed and Applied a bimodal neuron network to dissect the influence of sequence and chromatin on FOXA1 in A549. Applied attribution (DeepLIFT/SHAP) + motif discovery (TF-MoDISco) to reveal cooperativity between FOXA1 and AP-1

Multimodal Deep Learning for induced Fox Factor Binding Prediction

SKILLS: TENSORFLOW, PYTORCH, PYTORCH-LIGHTNING, CAPTUM/DEEPLIFTSHAP, TF-MODISCO

Jan. 2022 - Sep. 2023

Built multi-modal CNN/Transformer-based neural networks that integrate sequence + chromatin features to predict induced Fox family factor binding.
Interpreted the trained models to reveal motif and pre-existing chromatin preferences of Fox factors

Regulatory Network Analysis on RUNX1

Skills: R, DESeq, Snakemake Sep. 2020 - April. 2021

Used automated Snakemake workflows to analyze differential expression and TF binding to identify RUNX1 downstream targets in leukemia cells.
Integrated multi-omics datasets to find CENPE as a RUNX1-regulated gene affecting proliferation.

SOFTWARE & TOOLING PROJECTS

Seqchromloader (Training Data Toolkit for Genomic DL)

SKILLS: PYTHON, PYTORCH, WEBDATASET

github.com/seqcode/seqchromloader

• Built a production-ready toolkit to construct training datasets for sequence/chromatin DL models. Optimized for high-throughput, distributed dataset streaming. Has been widely adopted by lab members.

HDF5-Backed Genome Coverage & Heatmap Engine

RELATED SKILLS: PYTHON, HDF5

github.com/yztxwd/chiptoolkit

• Developed a Deeptools-like plotting engine using HDF5 to pre-store genome-wide tracks, enabling extremely fast data retrieving and heatmap/composite plot generation for thousands of regions.

General Snakemake Pipelines for NGS Data

SKILLS: R, PYTHON, SNAKEMAKE, COMMON PACKAGES USED IN NGS ANALYSIS, SLURM, HPC

github.com/yztxwd/snakemake-pipeline-general

• Built modular snakemake pipelines for ATAC-seq, ChIP-seq, RNA-seq, BS-seq, and MNase-seq. Designed for reproducibility, portability, and HPC batch environments (Slurm). Adapted by lab members for routine preprocessing workflows.

Education

Ph.D., Bioinformatics and Genomics Program, Pennsylvania State University

M.S., Developmental Biology, Southern Medical University

B.S., Preclinical Medicine, Southern Medical University

Aug. 2020 - May. 2026 (Expected)

Sep. 2017 - Jun. 2020

Sep. 2012 - Jun. 2017

Publications

Published research in **Molecular Cell, Genome Research, NAR Genomics & Bioinformatics, and Frontiers in Molecular Biosciences**, focusing on deep learning and statistical modeling for regulatory genomics, transcription factor binding, and chromatin architecture. Full list available on Google Scholar (scholar.google.com/citations?user=r7sRhzoAAAAJ)

NOVEMBER 14, 2025 JIANYU YANG · RESUME